
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Support Readiness Document
Java™ 2 Standard Edition,

Version 1.4
CORBA, Version 2.3.1, Support

March 2002

Sun Microsystems, Inc.

 2002 by Sun Microsystems, Inc.—Printed in USA.
901 San Antonio Road, Palo Alto, CA 94303-4900

All rights reserved. No part of this work covered by copyright may be duplicated by any means—graphic, electronic or mechanical,

including photocopying, or storage in an information retrieval system—without prior written permission of the copyright owner.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in

subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 (October 1988) and FAR

52.227-19 (June 1987). The product described in this manual may be protected by one or more U.S. patents, foreign patents, and/or

pending applications.

TRADEMARKS: Java, Java 2 Platform, J2SE, Java 2 Enterprise Edition, J2EE, Enterprise JavaBeans, EJB, Java Remote Method

Invocation, Java Naming and Directory Interface, Java Virtual Machine, JVM, Javadoc, Solaris, and Sun are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States

and other countries, exclusively licensed through X/Open Company, Ltd. Netscape is a trademark or registered trademark of

Netscape Communications Corporation.

Table of Contents

Preface v

1. CORBA Overview 1

1.1 Overview 1

1.1.1 RMI-IIOP 1

1.1.2 Java IDL 2

1.2 Features, Advantages, and Benefits 2

1.3 CORBA Tools Provided with J2SE, V. 1.4 3

1.4 Features or Services Not Provided 3

1.4.1 Interoperability Using GIOP Not Tested 3

1.4.2 Some CORBA Services Not Provided 3

1.4.3 No Interface Repository 3

1.5 Introduction to CORBA 3

1.6 Other Introductory Material 4

1.7 Specialized Terminology 4

2. Product Changes for the J2SE, V. 1.4, CORBA Implementation 6

2.1 Changes and New Features Since J2SE, V. 1.3 6

2.2 Bugs Fixed in J2SE, Version 1.4, CORBA 6

2.3 Previous Versions of CORBA in J2SE 16

2.4 Backward and Forward Compatibility 17

2.4.1 Code Compatibility 17
Sun Microsystems, Inc. Table of Contents i

2.4.2 Wire Compatibility 17

2.5 Upgrading to the J2SE, v. 1.4, Implementation CORBA From a Previous

Version 17

2.6 Porting Applications to the J2SE, v. 1.4, CORBA Implementation 18

3. Using and Supporting the J2SE, V. 1.4, CORBA Implementation 19

3.1 When to Use the RMI-IIOP Model 19

3.2 When to Use the IDL Model 20

3.3 Tutorials 20

3.4 Tools and Utilities 20

3.5 Localization and Internationalization 21

4. Troubleshooting 22

4.1 Product Limitations 22

4.1.1 Multiple Profile IORs or URLs 22

4.1.2 Interoperability With Third-Party ORBs 22

4.1.3 Interoperability With the J2SE, v. 1.3, ORB 22

4.1.4 Interoperability With the J2SE, v. 1.3.1, ORB 23

4.1.5 Multiple ORBs in Persistent Servers 23

4.1.6 Java Naming and Directory Interface (JNDI) in Persistent Servers
23

4.2 Common User Questions 23

4.3 Troubleshooting Utilities 23

4.4 Common Developer Problems 24

4.4.1 Internal Exception when Starting ORBD 24

4.4.2 Client and Server Unable to Connect to NamingService 24

4.4.3 Servertool Registration Failure 25

4.5 Error Message Guide 25

4.5.1 CORBA.COMM_FAILURE Exception 25

4.5.2 CORBA.INTERNAL Exception 26

4.5.3 Other CORBA Exceptions 26

5. Key Files and Directories 27
Sun Microsystems, Inc. Table of Contents ii

5.1 Configuration Files 27

5.1.1 The orb.properties File 27

5.2 Directories Created at Installation 27

6. Installing and Configuring J2SE, V. 1.4 CORBA 28

7. Reference Information 29

7.1 Product Information 29

7.2 Technical Documentation 29

7.3 Frequently Asked Questions 30

7.4 Tutorials and Other References 31
Sun Microsystems, Inc. Table of Contents iii

Sun Microsystems, Inc. Preface v

Preface

This document provides support readiness information for the Common Object

Request Broker Architecture (CORBA), version 2.3.1, as it is implemented in the

Java 2 Platform, Standard Edition (J2SE), reference implementation, version 1.4.

This document includes support readiness information for both parts of

CORBA: Java Interface Definition Language (Java IDL) and Remote Method

Invocation over Internet Inter-ORB Protocol (RMI-IIOP). Separate support

readiness documents were created for earlier versions of both Java IDL and

RMI-IIOP.

This document is not designed to provide comprehensive product training.

Instead, it focuses on issues immediately relevant to support, such as changes in

this version of the product, using and troubleshooting the product, and

installing and configuring the product. For pointers to other documentation, see

Section 7 “Reference Information.”

The information contained in this Support Readiness Document (SRD) is current

at the time of printing. Since SRDs are typically prepared in advance of the First

Customer Ship (FCS) date, there may be more recent or complete information

available from the resources mentioned in the SRD.

1 CORBA Overview

CORBA is a framework developed by the Object Management Group (OMG)

with the primary goal of collapsing the boundary created by different computer

languages and platforms.

In a distributed application, the various functions of the system can be

developed using different computer languages, such as Java, C++, C, and so on.

These functions can be run on various operating systems, such as the Solaris™

Operating Environment (OE), Microsoft Windows, HP-UX, and so on. Using

CORBA, these different language components can interoperate as heterogeneous

pieces of functionality.

1.1 Overview

The J2SE, v. 1.4, core contains a CORBA, v. 2.3.1, compliant Object Request

Broker (ORB) and other features, such as Common Object Services (COS),

Naming Service, and Portable Interceptors.

The J2SE, v. 1.4, CORBA implementation can be programmed in two different

ways:

■ Using the Java Interface Definition Language (Java IDL)

■ Using Remote Method Invocation over Internet Inter-ORB Protocol (RMI-

IIOP)

1.1.1 RMI-IIOP

In this model, the distributed object programming will be similar to RMI

programming with the flexibility of using either:

■ IIOP - the CORBA wire protocol

■ Java Remote Method Protocol (JRMP) - the RMI wire protocol
Sun Microsystems, Inc. 1 of 30

Note – RMI-IIOP is intended to allow interoperability between RMI and

CORBA. JRMP, which is the default communication protocol used in RMI, is not

supported in CORBA. By providing both protocols, a developer can switch

between the IIOP and JRMP protocols within a single program, if required.

Note – The Enterprise JavaBeans™ (EJB™) specification requires RMI-IIOP

rather than standard RMI.

1.1.2 Java IDL

In this model the user can define language-neutral interfaces using an OMG-

defined IDL. These language-neutral interfaces can be mapped into a particular

language; in this case, it can be mapped to Java.

1.2 Features, Advantages, and Benefits

The main advantages of using CORBA are:

■ Language-neutral, platform-neutral programming for easy integration with

legacy systems

■ Portable across various vendor ORBs

■ Well-defined, distributed object architecture

■ Industry-wide acceptance due to management by OMG, a consortium of over

800 companies

■ Interoperability among different vendor ORBs

The important features of the J2SE, v. 1.4, CORBA implementation include:

■ Portable Object Adapters (POA) - These help to build object implementations

that are portable across different vendor ORBs. The POA framework is a

powerful feature; it can be used in various ways to set different policies to

handle object implementations. Object implementations are generally referred

to as servants.

■ Portable Interceptors - Portable Interceptors are hooks to the ORB to intercept

the ORB requests, replies, creation, and so on.

■ Interoperable Naming Service (INS) - INS extends the basic COS Naming

service to provide a standard, easy-to-use naming service.

■ General Inter-Orb Protocol (GIOP), version 1.2 - This is a standard CORBA

protocol for on-the-wire exchange of requests and replies.
Sun Microsystems, Inc. 2 of 30

1.3 CORBA Tools Provided with J2SE, V. 1.4

The following CORBA tools are provided with J2SE, v. 1.4:

■ idlj compiler - Generates Java stubs and skeletons from the IDL interfaces.

■ rmic compiler - Generates IIOP-capable stubs, skeletons, and ties from Java

RMI interfaces.

■ tnameserv (Transient Naming Service) - Supports INS. We recommend using

the ORB Daemon’s naming service (orbd) instead of tnameserv . The

tnameserv tool is provided for backward compatibility.

■ orbd (ORB Daemon) - Provides a naming service, both transient and

persistent, and a server manager to locate and activate persistent servers.

■ Server Tool - Used for registering persistent servers with ORBD.

1.4 Features or Services Not Provided

1.4.1 Interoperability Using GIOP Not Tested

One of the main advantages of CORBA is interoperability, using the standard

GIOP protocol. We have not done extensive testing to prove that we interoperate

with all vendors. Successful testing for interoperability has been done using

ORBs from Borland, Hitachi, and IBM.

1.4.2 Some CORBA Services Not Provided

We ship only the COS Naming Service, which is a bare minimum service

required to use CORBA. We do not ship other CORBA services, such as

CosEventService, CosTraderService, and so on.

1.4.3 No Interface Repository

We do not ship an interface repository, which is useful for Dynamic Invocation

Interface (DII) and Dynamic Skeleton Interface (DSI) programming.

1.5 Introduction to CORBA

The following links provide a good introduction to CORBA:
Sun Microsystems, Inc. 3 of 30

■ Information on the OMG’s vision and architecture

http://www.omg.org/oma/

■ Introduction to CORBA

http://www.omg.org/gettingstarted/

■ Status of various CORBA interoperability projects

http://www.omg.org/interoperability_testing/

■ Free CORBA downloads that allow you to see CORBA in action

http://www.omg.org/technology/corba/corbadownloads.htm

1.6 Other Introductory Material

There are tutorials covering all the features shipped as part of the J2SE, v. 1.4,

CORBA implementation. Please visit the CORBA webpage for tutorials at:

http://java.sun.com/j2se/1.4/docs/guide/idl/

1.7 Specialized Terminology

Throughout this document, several abbreviations are used. The following is a

brief description of the abbreviations:

■ OMG - Object Management Group, a consortium of over 800 technology

companies managing extensions to the Object Management Architecture

(OMA).

■ CORBA - Common Object Request Broker Architecture defined by the OMG.

■ ORB - Object Request Broker, an important part of the CORBA architecture.

■ PI - Portable Interceptors, which are used to intercept ORB requests and

replies.

■ INS- Interoperable Naming Service, an extension of the basic COS Naming

Service.

■ DynAny - Dynamic ANY, a convenience API set to build and traverse

complex ANY objects.

■ GIOP - General Inter-Orb Protocol, which is standard on the wire protocol

defined by OMG.

■ IIOP - Internet Inter-Orb Protocol, GIOP on TCP/IP.

■ JRMP - Java Remote Message Protocol, the standard protocol for RMI.

■ idlj - IDL to Java compiler tool shipped with J2SE, v. 1.4.

■ ORBD - ORB Daemon.

■ Servant - Object Implementation.

■ IOR - Interoperable Object References, which contains information for

contacting the object, such as host, port, object key, and so on. There can be

multiple profile information, such as alternate host and port information.
Sun Microsystems, Inc. 4 of 30

http://www.omg.org/oma
http://www.omg.org/gettingstarted/index.htm
http://www.omg.org/interoperability_testing
http://www.omg.org/technology/corba/corbadownloads.htm
http://java.sun.com/j2se/1.4/docs/guide/idl

2 Product Changes for the J2SE, V. 1.4,
CORBA Implementation

2.1 Changes and New Features Since J2SE, V. 1.3

The changes in CORBA features since J2SE, v. 1.3, are described at:

http://java.sun.com/j2se/1.4/docs/guide/idl/
jidlChanges.html

2.2 Bugs Fixed in J2SE, Version 1.4, CORBA

TABLE 2-1 lists the bugs and RFEs that have been implemented in J2SE, v. 1.4.

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4

Bug/RFE BugID Synopsis

bug 4373899 JTS failure caused by ORB transaction propagation bug.

RFE 4129245 JavaIDL implementation changes required.

bug 4599666 Mismatch in Source File Generation to Class Files in rt.jar .

bug 4437784 JCK13a 3 api/javax_rmi/PortableRemoteObject/
failed with rmi.RemoteException b59.

bug 4236554 RepositoryId.createForAnyType does not handle some

IDLTypes .

Bug 4523004 rmic generates bad code for local optimization of void

return type.

Bug 4385089 Error in registration of transaction Current results in null

Current .

Bug 4396928 PIORB throws NullPointerException .
Sun Microsystems, Inc. 5 of 30

http://java.sun.com/j2se/1.4/docs/guide/idl/jidlChanges.html

Bug 4392735 ServerRequestInfo.get_server_policy throws

NO_IMPLEMENTexception.

Bug 4372163 Cannot create instance of stateful session when first instance

discarded by server.

Bug 4228125 Cannot make a remote call with a large array of bytes passed

as an argument.

RFE 4129272 API changes/additions to org.omg.CORBA required for

RMI/IIOP.

RFE 4129275 API changes/additions to org.omg.CORBA required for JTS

and IDLx extensions.

Bug 4119129 Invalid processing of little endian reply or request messages.

Bug 4256038 Implementation package renaming to avoid collisions.

Bug 4266054 Unable to create an instance of non-SUN ORB.

Bug 4296792 Remove non-standard APIs from org/omg/ package.

Bug 4233362 Bad code generated for argument copies in local stubs.

Bug 4191205 read_Object(Class stubClass) returns wrong stubs.

Bug 4430062 Client hangs/server thread dies when server attempts return

non-serializable object.

Bug 4452578 RI hangs when a return object is not serializable.

Bug 4485936 SystemExceptions raised in postinvoke or sri end points

causes memory leak.

Bug 4412097 ClientDelegate missing implementation of

CORBA.Object._hash .

Bug 4419578 -falltie option broke when file has multiple interfaces.

Bug 4517874 REGRESSION: RI 1.3_01 failure with J2SE, v. 1.4.

bug 4461743 ORB versioning broken in Merlin/J2EE, v. 1.3, Beta 2.

bug 4360254 Need OMG Issue 3681 fixed in JDK, v. 1.3, ORB.

bug 4372499 Public classes are missing in JDK, v. 1.4, build b32.

bug 4427976 Duplicate source file in JDK workspace breaks the Javadoc

build.

bug 4459161 INS assumes LocateRequest for NameService with

corbaloc URL.

bug 4184740 Wrong marshalling exception thrown.

Bug 4228093 Application exception not propagated to the client (RMI-

IIOP-POA).

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4 (Continued)
Sun Microsystems, Inc. 6 of 30

Bug 4187986 Need support for unmarshaling local persistent objects.

Bug 4356662 BAD_OPERATIONin examples.hello interoperation.

Bug 4228097 Transaction not propagated between RMI objects (RMI-IIOP-

POA).

Bug 4228100 Incorrect interaction between ORB and JTS for local

invocation (RMI-IIOP-POA).

Bug 4262402 Cannot create additional persistent POA if poaids.db file is

present.

Bug 4236985 rmic generates wrong stubs/ties for serializable arguments.

Bug 4262822 SecureRandom function implementation is too slow.

Bug 4221548 TypeCodeImpl.equal does not handle aliases types.

Bug 4210101 JavaIDL does not support TypeCode creation in singleton

for all types.

Bug 4468349 Wrong Stub/Tie code generated when argument type is

static nested class.

Bug 4189780 ORB's use of system properties prevent multiple ORBs in

same VM.

Bug 4394799 POA-enabled Ties should not fail shutdown if no POA is

used.

Bug 4275167 Same build flag in Swing and CORBA makefiles can cause

build problems on Microsoft Windows.

Bug 4105856 Ignores GIOP Reply message encoded as little-endian.

bug 4105579 Source for package org.omg.CORBA.ORBPackage is

missing some doc comments.

Bug 4105589 Source for package org.omg.CosNaming is missing some

documentation comments .

Bug 4105584 Source for package org.omg.CORBA.TypeCodePackage is

missing some doc comments .

Bug 4105591 Source for package

org.omg.CosNaming.NamingContextPackage missing

some comments.

Bug 4365188 Bugs in RMI-IIOP Serialization protocol prevents Object

Evolution.

Bug 4348378 Tnameserv tool is not internationalized.

Bug 4303282 Removal/documenting of org.omg.CORBA packages in

question from JDK core.

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4 (Continued)
Sun Microsystems, Inc. 7 of 30

Bug 4290667 NullPointerException thrown at

com.sun.corba.se.internal.core.Profile .

RFE 4312958 Pure ORB support for J2EE.next .

Bug 4321532 Race condition in IIOPConnection.java .

Bug 4502971 ServerRequestInfo::request_id must be unique.

Bug 4533469 CORBA BAD OPERATIONserver errors seen with CTS

appclient/deploy tests.

Bug 4479114 CORBA.portable.ObjectImpl._non_existent()
throws OBJECT_NOT_EXIST.

Bug 4456086 Server thread hangs when fragments don't complete because

client-side error.

Bug 4450059 RequestInfoImpl uses Class.forName incorrectly.

Bug 4430551 Interceptors.idl contains module IOP which should be

in IOP.idl .

Bug 4418740 Co-located ImplBase calls are not ORB-mediated.

Bug 4409028 Server side PICurrent usage is failing.

Bug 4398869 Exception from PI.

Bug 4395809 CONN_CLOSE_REBINDcan lead to infinite loops in client

ORB.

Bug 4395812 createSystemExceptionResponse from ORB.process
does not work with PI.

Bug 4395814 COMM_FAILUREin ClientDelegate.createRequest may

cause infinite loop.

Bug 4395813 Delete connection if socket open fails in

ConnectionTable.getConnection .

Bug 4393695 Client interceptors not executed for Object pseudo-ops.

Bug 4393382 ClienRequestInfo.effective_target() needs to be

optimized.

Bug 4394520 codec.encode_value fails when passed an Any (from

singleton ORB) holds objrefs.

Bug 4379522 PI - Unbalanced call stack.

Bug 4419283 _non_existent throws NullPointerException in poa/
retain/defaultServant config.

Bug 4417873 PI: Need to report TRANSIENT/3 when request cancelled.

Bug 4409926 ClientRequestInfo::effective_target should return

generic type for performance.

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4 (Continued)
Sun Microsystems, Inc. 8 of 30

Bug 4395696 Util.isLocal should return false.

Bug 4395811 ThreadDeath may cause interceptor ending points not to be

called.

Bug 4384985 InterceptorList.sortInterceptors gets array out-of-

bounds exception.

Bug 4386041 ClientRequestInfo.get_reply_service_context
gets NullPointerException with DII.

RFE 4070259 IOR hostname should be configurable.

Bug 4419994 Problems with GIOP request versioning and location

forward.

Bug 4384995 GIOP.get*ServerPort should complain if called before

endpoints initialized.

Bug 4384988 DefaultSocketFactory.createServerSocket should

complain if not given IIOP_CLEAR .

Bug 4226624 JavaIDL orb unnecessarily retries requests that result in

system exceptions.

Eou 4486041 .init() could provide better failure diagnostics.

Bug 4429899 Replace PI doc ptc/00-08-06 with ptc/2001-03-04 in docs.

Bug 4105571 Source for package org.omg.CORBA is missing some

documentation comments.

Bug 4397543 GIOP 1.0 reply to a GIOP 1.1 request CORBA org.omg .

Bug 4473714 ORB versioning required for JDK 1.3.1_01 and PutField/
GetField .

Bug 4418763 Stream duplication can cause INTERNAL.

Bug 4480483 javax.rmi.CORBA.Util.writeAny should include

repId in TypeCode .

Bug 4460764 ClassDesc written incorrectly.

Bug 4423950 Class evolution with PutField/GetField broken.

Bug 4415491 Fix for 4397033 can cause class loading failures.

Bug 4483833 ORB memory leak when invoking inactive IOR.

Bug 4484193 ORB.string_to_object raises INV_OBJREF for a valid

corbaloc URL.

Bug 4403607 Performance Bug: Utility package prefix change.

Bug 4478497 CORBA method invocations work unstable.

Bug 4474942 CORBA makefile references non-existent classic VM.

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4 (Continued)
Sun Microsystems, Inc. 9 of 30

Bug 4464481 Incorrect Parsing of

-Dorg.omg.CORBA.ORBInitRefSvcs .

Bug 4447979 Svcs registered using

orb.register_initial_reference() are unavailable

for INS.

Bug 4404956 to_string operation incorrectly stringified a Namewith

empty kind field.

Bug 4403619 Utility.loadClassOfType() results in Null Pointer

Exceptions in some cases.

Bug 4398234 to_name returns an incorrect NameComponent.

Bug 4398219 to_url operation accepting a invalid URL address

component.

Bug 4398205 resolve_str operation not able to resolve a stringified

name.

Bug 4389165 RMI-IIOP Tie class should not assume a specific Hierarachy.

Bug 4372194 org.omg.CORBA.Initializer is missing a field.

Bug 4325192 POAORB.init(null, null) fails.

Bug 4409264 idlj generates server classes with variables that clash with

parameter names.

Bug 4407349 Missing InterfaceHelper Java file from idlj (again).

Bug 4374920 POAImpl creates listen sockets for client ORBS.

Bug 4409787 Prob w/gen'd Java when using non-complete case-list for

union's discriminator.

Bug 4286896 Generated Java code for Discriminated Union doesn't

compile.

Bug 4476256 ObjectKeyTemplate.getAdapterId slow 'time'

performance.

Bug 4473546 Generated union helper class read method must initialize

the discriminator.

Bug 4434440 idlj generates bad code for non-default unions with enum
as discriminator.

Bug 4416422 ORB search for orb.properties file should be improved.

Eou 4379402 idlj needs configurable/compatible output filenames for

tie delegates.

RFE 4407304 idlj : introduce package name translation, not only package

prefixing.

Bug 4394764 Javadocs missing in portable interceptors.

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4 (Continued)
Sun Microsystems, Inc. 10 of 30

Bug 4395252 IORInfo.get_effective_policy should never throw

INV_POLICY.

Bug 4393853 PI - Co-located calls overwrite ServerRequestInfo .

Bug 4385644 POA.id() returning null.

Bug 4384769 PI - register_initial_reference(LocalObject)
causes ClassCastException .

Bug 4382517 PI - PICurrent does not function as described in

specification.

Bug 4396514 orbutil.MinorCodes contains duplicate meaning for

INTERNAL 6.

Bug 4395808 PIORB.registerORBInitializers use applet

classLoader if Class.forName fails.

Bug 4385945 classLoader reference never set in corba.ORB .

Bug 4384135 PI - IORInfo.get_effective_policy throws incorrect

exception.

Bug 4406473 Portable Interceptors REVISITs.

Bug 4399805 Javadoc for org.omg.CORBA.ORB.create_policy is out

of date.

Bug 4395669 RequestInfo operations need to be cached.

Bug 4392779 object_id and adapter_id should be available in

send_other/exception .

Bug 4155455 ORB.string_to_object throws MARSHALexception when

IOR contains objectkey INIT .

Bug 4372196 org.omg.CORBA.ServiceDetail and

ServiceInformation have errors in Helper classes.

Bug 4318477 rmic -iiop fails to use classpath properly or to use jar
files on the classpath .

Bug 4373306 org.omg.CORBA.Initializer has wrong constructor in

SE1.3.

Bug 4424268 Incorrect TypeCode behavior for valuetypes (CORBA 2.3

compliance issues).

Bug 4419156 Cannot invoke method over RMI/IIOP: its name clashes

with an IDL keyword.

Bug 4419495 rmiiiop/security problem: unable to marshal

IDLEntity types across remote intf .

Bug 4384167 Marshalling exception for discriminated union idl types.

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4 (Continued)
Sun Microsystems, Inc. 11 of 30

Bug 4365503 PortableRemoteObject.narrow() bug in our J2EE

rmiiiop implementation from ATG.

Bug 4285443 Util.unexportObject throws NullPointerException .

Bug 4148483 Java IDL docs fail to document incompleteness of

Any.equal() .

Bug 4064184 Recursive TypeCodes are not implemented.

Bug 4398375 ORB shutdown with wait for completion not implemented.

Bug 4308299 incorrect values in .../build/solaris/sun/rmi/org/
omg/GNUmakefile .

Bug 4236995 Anys cannot be reused under certain conditions.

Bug 4364208 org.omg.CORBA package has classes which do not conform

to the OMG IDL/Java mappi.

Bug 4360643 _non_existent results in null pointer exception in server.

Bug 4386423 ORB does not accept all AddressingDispositions as part

of GIOP Message Header.

Bug 4149775 JavaIDL ORB interoperability failures.

Bug 4126181 Bug in implementation of _get_interface() .

Bug 4318587 Block of RMI-IIOP communication with multithreaded

client.

Bug 4294980 idlj creates server-side skeletons which do not clone type

IDs.

Bug 4328952 com.sun.corba.se.internal.util.RepositoryId:
cache is non-final public static.

Bug 4267147 Fix Null pointer exception for IORs with 1.0 Profile format.

Bug 4350294 Incorrect CORBA RepositoryID calculations.

RFE 4228331 There's no way to get IOR with IP Address instead of Host

Name.

Bug 4181568 Java IDL does not call setTcpNoDelay(true) on sockets.

Bug 4433966 <rmic -idl> or <rmic -iiop> fails in JDK1.3/1.3.1 with

class loading.

Bug 4531406 rmic uses capital \U for escaping I18N characters.

Bug 4410058 Performance problem when loading ties and stubs .

RFE 4328099 Field set to null instead of this by defaultReadObject()
in RMI-IIOP.

Bug 4463919 ObjectStreamClass does not support inherited

writeReplace/readResolve .

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4 (Continued)
Sun Microsystems, Inc. 12 of 30

Bug 4391648 Anys created with the ORBSingleton throw

ClassCastException on insert_Value .

Bug 4435390 Util.writeAny should report a specific error if object not

serializable.

Bug 4401044 CORBA read_Object(interface) throws CORBA

MARSHALexception.

Bug 4385162 INV_OBJREF when reading a stringified IOR (re-open #

4322574).

Bug 4324936 Marshaling exception for wstring fields of structure.

RFE 4410060 Allow the user to specify code sets.

Bug 4404982 Accepted a corbaloc URL with multiple protocols, one of

them being rir .

Bug 4362895 ORB.string_to_object with keystring causes

OutOfMemoryError on tnameserv .

Bug 4204769 NotFound doesn't return proper rest_of_name .

Bug 4193117 Character range violation should raise DATA_CONVERSION,
instead of MARSHAL.

Bug 4402934 to_string operation throws an incorrect Exception for

invalid Name.

Bug 4378238 Sources for org.omg.CORBA.PolicyError do not match

.class-files .

Bug 4484767 idlj gets confused by "(" and/or ")" as IDL const string

value.

Bug 4330397 Problems with unions there two or more cases points to the

same object.

Bug 4257220 RMI-IIOP idlj compiler generates bad code for oneway

operations.

RFE 4287942 Would you please make a method to delete the instance of

ORB.

Bug 4328948 com.sun.corba.se.internal.corba.ClientDelegate
:debug is non-final public static.

Bug 4294972 POAImpl.java:activate_object method returns

object-ids without cloning.

Bug 4290501 CORBA failure on sending large objects.

RFE 4227148 IDL javatoidl compiler 100% Java version.

Bug 4292565 idlj creates superfluous folder hierarchy for nested

prefixed packages.

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4 (Continued)
Sun Microsystems, Inc. 13 of 30

Bug 4278435 Marshalling a CORBA structure with nulls in blows up the

client on receipt.

Eou 4379317 idlj -generated readObject and WriteObject methods

throw wrong exceptions.

Bug 4067057 Server can't reconnect to client when client side connection

table is full.

Bug 4410548 JDKClassLoader could abort unnecessarily in the future.

Bug 4294494 DSI does not work with user exceptions.

Bug 4193307 Singleton ORB should not support object_to_string .

Bug 4498869 Double slash confuses idlj compiler.

Bug 4401627 OBJ_ADAPTERexception in POA destroy.

Bug 4309167 PortableRemoteObject unexportObject is broken for

POA-enabled Ties .

Bug 4145490 org.omg.CORBA.Any.equal(Any) not fully implemented.

RFE 4227142 ORB singleton optimization.

RFE 4227149 Socket factories for SSL support.

Bug 4517819 DynAny.current_member_kind() doesn't throw

InvalidValue for invalid position.

Bug 4473859 rmic -iiop gen. fails when interface throws super class of

impl exception.

Bug 4393485 ListenerThread and server socket not terminated by

ORB.shutdown() .

Bug 4324049 TypeCode.equivalent not implemented.

Bug 4322176 Repeated interface method declarations confuse RMI-IIOP

compiler.

Bug 4290049 org.omg.CORBA.ORB.create_string_tc should throw

BAD_PARAMfor negative values.

Bug 4274455 copyObjects returns wrong stub type.

Bug 4274493 TypeCodeImpl.copy does not support tk_wstring .

Bug 4274588 CORBA.MARSHALerror with value types and indirection.

Bug 4176268 org.omg.CORBA.TypeCode.equal() method bug.

RFE 4274686 Request to have vendor minor code ID displayed in

SystemException.toString() .

Bug 4419991 createRequest GIOPVersion locatedIOR problem.

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4 (Continued)
Sun Microsystems, Inc. 14 of 30

2.3 Previous Versions of CORBA in J2SE

The CORBA implementation in J2SE, v. 1.4, is compliant with CORBA, v. 2.3.1.

Prior to J2SE, v. 1.4, we did not have a specific compliance document, but J2SE,

v. 1.3, could be considered compliant with CORBA, v. 2.0+.

The documentation for the CORBA implementation in J2SE, v. 1.3, is located at:

http://java.sun.com/j2se/1.3/docs/guide/idl/index.html

Support Readiness information for the previous version of RMI-IIOP is available

at:

http://access1.sun.com/SRDs/access1_srds.html

Bug 4386425 ORB uses byte[] for object key instead of ObjectKey
object which is inefficient.

RFE 4414144 GIOP CancelRequest processing causes orb worker thread

to die.

Bug 4273648 AnyImplHelper and TypeCodeImplHelper don't compile.

Bug 4267142 Fix typeId generation for Interfaces implementing Remote.

Bug 4445431 Exception stack for LocalObject .

Bug 4512720 Must use decimal to specify conversion list code sets.

Bug 4407009 idlj too lenient with wchar and wstring literals.

Bug 4201726 org.omg.CORBA.ORB loads singleton orb too soon.

Bug 4109166 Command to list the complete path of the server using the

tool is not listed.

RFE 4145497 Java IDL does not support long double , wchar , wstring .

Bug 4335580 ORB shutdown does not terminate server thread.

Bug 4288985 Private method ObjectInputStream.loadClass0() will

be removed soon.

RFE 4344633 Incorrect Repository IDs for IDLType , DefinitionKind ,

ValueMember .

RFE 4124730 Socket Factory for ORB.

RFE 4413694 Need for unique worker thread names for debugging

purposes.

TABLE 2-1 Bugs and RFEs Implemented in J2SE, v. 1.4 (Continued)
Sun Microsystems, Inc. 15 of 30

http://java.sun.com/j2se/1.3/docs/guide/idl/index.html
http://access1.sun.com/SRDs/access1_srds.html

2.4 Backward and Forward Compatibility

2.4.1 Code Compatibility

Code developed using the CORBA tools in J2SE, v. 1.3, is forwardly compatible

with J2SE, v. 1.4; however, code developed using the latest CORBA features in

J2SE, v. 1.4, such as POA, PI, INS, is not backwardly compatible.

2.4.2 Wire Compatibility

Clients and servers running on J2SE, v. 1.3, and J2SE, v. 1.4, will interoperate in

most cases. There are some corner cases where they will not interoperate. These

corner cases are explained in Section 4.1 “Product Limitations.”

2.5 Upgrading to the J2SE, v. 1.4, Implementation
CORBA From a Previous Version

To use the new features in CORBA, v. 2.3.1, the user needs to understand POA,

PI, and INS.

With J2SE, v. 1.4, we recommend using ORBD instead of tnameserv . The

NameService in ORBD provides better quality of service. We also recommend

using POA-based programming for CORBA server development instead of old

ImplBase servants.

For a list of tutorials describing how to write code using these features, please

see Section 3.3 “Tutorials.”

For information on J2SE, v. 1.4, CORBA compliance with OMG documents,

please see:

http://java.sun.com/j2se/1.4/docs/api/org/omg/CORBA/doc-
files/compliance.html
Sun Microsystems, Inc. 16 of 30

http://java.sun.com/j2se/1.4/docs/api/org/omg/CORBA/doc-files/compliance.html
http://access1.sun.com/SRDs/access1_srds.html

2.6 Porting Applications to the J2SE, v. 1.4,
CORBA Implementation

An application written for J2SE, v. 1.3, CORBA will need to be recompiled with

the IDLJ compiler before it can be used with J2SE, v. 1.4. A special IDLJ compiler

switch must be set when the code is recompiled. This is explained in the

documents listed in Section 3.4 “Tools and Utilities.” The user may choose to use

only the class files which are precompiled in J2SE, v. 1.3.
Sun Microsystems, Inc. 17 of 30

http://java.sun.com/j2se/1.4/docs/api/org/omg/CORBA/doc-files/compliance.html

3 Using and Supporting the J2SE,
V. 1.4, CORBA Implementation

As explained in the previous sections, the J2SE, v. 1.4, CORBA implementation

supports two different models:

■ RMI-IIOP model

■ IDL model

The following paragraphs explain in detail when to use these models.

3.1 When to Use the RMI-IIOP Model

RMI-IIOP is for Java programmers who want to program to the RMI interfaces

but also want to use IIOP as the underlying transport. RMI-IIOP provides

interoperability with other CORBA objects implemented in various languages,

but only if all the remote interfaces are originally defined as Java RMI interfaces.

RMI-IIOP is of particular interest to programmers using EJB since the remote

object model for EJBs is RMI-based.

RMI-IIOP combines the best features of Java RMI with the best features of

CORBA. RMI-IIOP speeds distributed application development by allowing

developers to work completely in the Java programming language, writing

remote interfaces in the Java programming language and implementing them

simply using Java technology and the Java RMI APIs.

When using RMI-IIOP to produce Java technology-based distributed

applications, there is no separate Interface Definition Language (IDL) or

mapping to learn: the remote interfaces can be implemented in any language

that is supported by an OMG mapping and that has a vendor-supplied ORB.

Similarly, clients can be written in other languages, using IDL derived from the

remote Java technology-based interfaces.
Sun Microsystems, Inc. 18 of 30

RMI-IIOP provides flexibility by allowing developers to pass any Java object

between application components either by reference or by value.

Like CORBA, RMI-IIOP is based on open standards defined with the

participation of hundreds of vendors and users in the OMG. IIOP eases legacy

application and platform integration by allowing application components

written in C++, Smalltalk, and other CORBA supported languages to

communicate with components running on the Java platform.

3.2 When to Use the IDL Model

The OMG IDL is a purely declarative language designed for specifying

programming language-independent operational interfaces for distributed

applications. OMG specifies a mapping from IDL to several different

programming languages, including C, C++, Lisp, Python, Smalltalk, COBOL,

Ada, and Java. When mapped, each statement in OMG IDL is translated to a

corresponding statement in the programming language of choice.

Java IDL is an implementation of the CORBA specification. For example, you

could use the Java IDL Compiler, idlj , to map an IDL interface to Java and

implement the client class in Java. If you map the same IDL to C++, using an

IDL-to-C++ compiler and a C++ ORB, and implement the server in that

language, the Java client and C++ server interoperate through the ORB as

though they were written in the same language.

3.3 Tutorials

The following tutorials provide complete code samples with descriptions:

■ Tutorials for RMI-IIOP model can be found at:

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/

■ Tutorials for IDL programming can be found at:

http://java.sun.com/j2se/1.4/docs/guide/idl/

3.4 Tools and Utilities

Description of the following tools can be found at:

IDLJ :

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/
toJavaPortableUG.html
Sun Microsystems, Inc. 19 of 30

http://java.sun.com/j2se/1.4/docs/guide/idl/index.html
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/toJavaPortableUG.html

ORBD:

http://java.sun.com/j2se/1.4/docs/guide/idl/orbd.html

ServerTool :

http://java.sun.com/j2se/1.4/docs/guide/idl/
servertool.html

tnameserv :

http://java.sun.com/j2se/1.4/docs/guide/idl/tnameserv.html

rmic :

http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/
rmic.html

3.5 Localization and Internationalization

All the RMI-IIOP and CORBA tools are localized.
Sun Microsystems, Inc. 20 of 30

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/toJavaPortableUG.html
http://java.sun.com/j2se/1.4/docs/guide/idl/orbd.html
http://java.sun.com/j2se/1.4/docs/guide/idl/servertool.html
http://java.sun.com/j2se/1.4/docs/guide/idl/tnameserv.html
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/rmic.html

4 Troubleshooting

4.1 Product Limitations

4.1.1 Multiple Profile IORs or URLs

The J2SE ORB will use the first profile (Host, Port information) if there are

multiple profiles given either in the IOR or INS-based corbaloc: or

corbaname: URLs.

4.1.2 Interoperability With Third-Party ORBs

We have not done extensive testing to prove that we interoperate with all

vendors. Successful testing for interoperability has been done using ORBs from

Borland, Hitachi, and IBM.

4.1.3 Interoperability With the J2SE, v. 1.3, ORB

The J2SE, v. 1.3 and v. 1.4, ORBs interoperate except for two limitations:

■ If a class has evolved from J2SE, v. 1.3, to v. 1.4 and uses the writeObject()
custom marshaling method, objects cannot be passed by value.

■ Using RMI-IIOP with Java char arrays and characters greater than 8 bits will

result in DATA_CONVERSIONexceptions. This is fixed in J2SE, v. 1.3.1.
Sun Microsystems, Inc. 21 of 30

4.1.4 Interoperability With the J2SE, v. 1.3.1, ORB

J2SE, v. 1.3.1, and J2SE, v. 1.4, ORBs interoperate except for one limitation. If a

class serial version has changed and the newer version class uses the

putfields() and getfields() methods, then those objects cannot be passed

by value. This bug is fixed in the J2SE, v. 1.3.1_01, patch.

4.1.5 Multiple ORBs in Persistent Servers

For persistent servers, that is ServerTool registered servers, you cannot have

more than one ORB instance running because there will be a ORBId collision.

There is no CORBA standard property to pass the ORBId to avoid this collision.

4.1.6 Java Naming and Directory Interface (JNDI) in

Persistent Servers

JNDI’s new InitialContext() instantiates an ORB. This will not work in

persistent servers because of the limitation above. For JNDI to work in a

persistent server, pass the java.naming.corba.orb property with the ORB

instance already in use. This way, JNDI will reuse the same ORB instance to get

around the limitation in the J2SE, v. 1.4, ORB.

4.2 Common User Questions

The following FAQ covers most troubleshooting questions:

■ Java IDL FAQ

http://java.sun.com/j2se/1.4/docs/guide/idl/jidlFAQ.html

4.3 Troubleshooting Utilities

The ORB’s debugging flag can be turned on by passing the -ORBDebug
argument to the ORB.init() method. The developer can also choose the

following debug flags to see debug statements in various areas:

■ transportDebugFlag
■ subcontractDebugFlag
■ poaDebugFlag
■ namingDebugFlag
■ serviceContextDebugFlag
Sun Microsystems, Inc. 22 of 30

http://java.sun.com/j2se/1.4/docs/guide/idl/jidlFAQ.html

■ transientObjectManagerDebugFlag
■ giopVersionDebugFlag
■ shutdownDebugFlag
■ giopDebugFlag

These flags can be passed as a comma-separated list to the -ORBDebug flag. For

example, to see the debug output in the Transport , Subcontract , and

Shutdown areas, pass the following -ORBDebug flags to ORB.init() :

-ORBDebug transport,subcontract,shutdown

The user can also choose to pass the -ORBDebug flags as a property. The

property name is com.sun.CORBA.ORBDebug , and the property values should

list all the debug flags separated by commas. For example, to see the debug

output in the areas of naming and giop , use:

com.sun.CORBA.ORBDebug=naming,giop

4.4 Common Developer Problems

4.4.1 Internal Exception when Starting ORBD

Problem: Unable to Start ORBDbecause of an INTERNAL exception.

Cause: If the last two lines of the stack trace from the CORBA.INTERNAL
exception are:

com.sun.corba.se.internal.iiop.GIOPImpl.createListener(
GIOPImpl.java)

com.sun.corba.se.internal.iiop.GIOPImpl.getEndpoint(GIOPImpl.java)

This means that the specified ORBInitialPort /ActivationPort is already

in use.

Solution: There are two ways to get around this problem:

■ Specify a different ORBInitialPort /ActivationPort

■ Kill the process using the specified ORBInitialPort /ActivationPort if

the other process using these ports is no longer required.

4.4.2 Client and Server Unable to Connect to

NamingService

Problem: The client and server are unable to connect to the NamingService .
Sun Microsystems, Inc. 23 of 30

Cause: If a COMM_FAILUREexception occurs, the cause could be:

■ ORBDor tnameserv was not successfully launched.

■ The ORBInitialHost or ORBInitialPort specified to contact ORBDor

tnameserv is incorrect.

Solution: Correct the cause of the problem as listed above.

4.4.3 Servertool Registration Failure

Problem: Servertool registration fails.

The Servertool fails with the following message:

server already registered (serverid = <serverId>)

Solution: Change the registration for this server. You can do this in one of two

ways:

■ Shutdown ORBDand clean up the orb.db directory. This directory contains

information about all the registered servers. When you restart the ORBD, you

should be able to reregister the server.

Note – If you clean up the orb.db directory, you may lose all the persistent

state information for ORBD. This will have the same effect as a fresh ORBD
startup.

■ Choose to use a different -applicationname as explained in the

Servertool documentation.

4.5 Error Message Guide

4.5.1 CORBA.COMM_FAILUREException

A CORBA.COMM_FAILUREexception is raised when the client is unable to

contact the server. This may happen for various reasons, such as:

■ The server was not successfully started.

■ The server was shutdown before the client was invoked.

The solution is to check whether or not the server is up and running correctly. If

the server is not running correctly, start the server.
Sun Microsystems, Inc. 24 of 30

4.5.2 CORBA.INTERNALException

A CORBA.INTERNALexception is raised when there are abnormal situations.

This could be a serious error.

4.5.3 Other CORBA Exceptions

Other CORBA exceptions are thrown for various reasons. For details, see:

http://java.sun.com/j2se/1.4/docs/guide/idl/
jidlExceptions.html
Sun Microsystems, Inc. 25 of 30

http://java.sun.com/j2se/1.4/docs/guide/idl/jidlExceptions.html

5 Key Files and Directories

5.1 Configuration Files

5.1.1 The orb.properties File

The orb.properties file is a read-only file containing ORBproperties. To

modify the ORBproperties, create a Properties object and pass it as a

parameter during ORB initialization, using the ORB.init() method.

ORBlooks for the orb.properties file first in the user’s home directory (the

user.home property is new for J2SE, v. 1.4). If the ORB.properties file is not

found, the ORBwill look for orb.properties in the directory

{java.home}/lib .

Some of the ORBproperties are explained at:

http://java.sun.com/j2se/1.4/docs/guide/idl/
jidlInitialization.html#systempropertiesobject

5.2 Directories Created at Installation

The CORBA product is part of J2SE, v. 1.4. The directories created during the

J2SE, v. 1.4, installation are used with the J2SE, v. 1.4, CORBA implementation.
Sun Microsystems, Inc. 26 of 30

http://java.sun.com/j2se/1.4/docs/guide/idl/jidlExceptions.html
http://java.sun.com/j2se/1.4/docs/guide/idl/jidlInitialization.html#systempropertiesobject

6 Installing and Configuring J2SE,
V. 1.4 CORBA

The CORBA functionality is included with J2SE, v. 1.4. No additional installation

or configuration is required. For information on installing and configuring J2SE,

v. 1.4, see the J2SE, v. 1.4, Overview Support Readiness Document, available at:

http://access1.sun.com/SRDs/access1_srds.html
Sun Microsystems, Inc. 27 of 30

http://access1.sun.com/SRDs/access1_srds.html

7 Reference Information

7.1 Product Information

Product pages from Sun:

■ J2SE, v. 1.4, CORBA home page

http://java.sun.com/j2se/1.4/docs/guide/corba/

■ Java IDL home page

http://java.sun.com/j2se/1.4/docs/guide/idl/

■ RMI-IIOP home page

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/

Other sites with product information on CORBA:

■ Official OMG website

http://www.omg.org/

7.2 Technical Documentation

J2SE, v. 1.4, CORBA Programmer’s Guides:

■ RMI-IIOP Programmer’s Guide

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/
rmi_iiop_pg.html

■ CORBA Concepts

http://java.sun.com/j2se/1.4/docs/guide/idl/
jidlUsingCORBA.html
Sun Microsystems, Inc. 28 of 30

http://java.sun.com/j2se/1.4/docs/guide/corba/index.html
http://java.sun.com/j2se/1.4/docs/guide/idl
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/index.html
http://www.omg.org
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/rmi_iiop_pg.html
http://java.sun.com/j2se/1.4/docs/guide/idl/jidlUsingCORBA.html
http://access1.sun.com/SRDs/access1_srds.html

■ Distributed Application Concepts

http://java.sun.com/j2se/1.4/docs/guide/idl/
jidlDistApp.html

■ API Guide for J2SE, v. 1.4

http://java.sun.com/j2se/1.4/docs/api/

■ CORBA packages - org.omg.*

■ RMI-IIOP packages - javax.rmi.*

Other technical documentation:

■ CORBA Exceptions

http://java.sun.com/j2se/1.4/docs/guide/idl/
jidlExceptions.html

■ CORBA Initialization

http://java.sun.com/j2se/1.4/docs/guide/idl/
jidlInitialization.html

■ COSNaming

http://java.sun.com/j2se/1.4/docs/guide/idl/
jidlNaming.html

■ Dynamic Skeleton Interface

http://java.sun.com/j2se/1.4/docs/guide/idl/jidlDSI.html

■ IDL to Java Mapping

http://java.sun.com/j2se/1.4/docs/guide/idl/mapping/
jidlMapping.html

7.3 Frequently Asked Questions
■ Java IDL FAQ

http://java.sun.com/j2se/1.4/docs/guide/idl/jidlFAQ.html

■ JDC Forum archive for Java IDL

http://forum.java.sun.com/forum.jsp?forum=15

■ JDC Forum archive for RMI-IIOP

http://forum.java.sun.com/forum.jsp?forum=59
Sun Microsystems, Inc. 29 of 30

http://java.sun.com/j2se/1.4/docs/guide/idl/jidlUsingCORBA.html
http://java.sun.com/j2se/1.4/docs/guide/idl/jidlDistApp.html
http://java.sun.com/j2se/1.4/docs/api/index.html
http://java.sun.com/j2se/1.4/docs/guide/idl/jidlExceptions.html
http://java.sun.com/j2se/1.4/docs/guide/idl/jidlInitialization.html
http://java.sun.com/j2se/1.4/docs/guide/idl/jidlNaming.html
http://java.sun.com/j2se/1.4/docs/guide/idl/jidlDSI.html
http://java.sun.com/j2se/1.4/docs/guide/idl/mapping/jidlMapping.html
http://java.sun.com/j2se/1.4/docs/guide/idl/jidlFAQ.html
http://forum.java.sun.com/forum.jsp?forum=15
http://forum.java.sun.com/forum.jsp?forum=59

7.4 Tutorials and Other References
■ Getting Started Using RMI-IIOP

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/
tutorial.html

■ Getting Started with Java IDL

http://java.sun.com/j2se/1.4/docs/guide/idl/GShome.html

■ Introduction to CORBA

http://developer.java.sun.com/developer/onlineTraining/
corba/

■ CORBA for beginners

http://cgi.omg.org/corba/beginners.html

■ Information on OMG’s vision and architecture

http://www.omg.org/oma

■ Introduction to CORBA

http://www.omg.org/gettingstarted/index.htm

■ Status of various CORBA interoperability projects

http://www.omg.org/interoperability_testing
Sun Microsystems, Inc. 30 of 30

http://cgi.omg.org/corba/beginners.html
http://www.omg.org/oma
http://www.omg.org/gettingstarted/index.htm
http://www.omg.org/interoperability_testing
http://forum.java.sun.com/forum.jsp?forum=59
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/tutorial.html
http://java.sun.com/j2se/1.4/docs/guide/idl/GShome.html
http://developer.java.sun.com/developer/onlineTraining/corba/

	Table of Contents
	1. CORBA Overview 1
	2. Product Changes for the J2SE, V. 1.4, CORBA Implementation 6
	3. Using and Supporting the J2SE, V.�1.4, CORBA Implementation 19
	4. Troubleshooting 22
	5. Key Files and Directories 27
	6. Installing and Configuring J2SE, V.�1.4 CORBA 28
	7. Reference Information 29

	1 CORBA Overview
	1.1 Overview
	1.1.1 RMI-IIOP
	1.1.2 Java IDL

	1.2 Features, Advantages, and Benefits
	1.3 CORBA Tools Provided with J2SE, V. 1.4
	1.4 Features or Services Not Provided
	1.4.1 Interoperability Using GIOP Not Tested
	1.4.2 Some CORBA Services Not Provided
	1.4.3 No Interface Repository

	1.5 Introduction to CORBA
	1.6 Other Introductory Material
	1.7 Specialized Terminology

	2 Product Changes for the J2SE, V. 1.4, CORBA Implementation
	2.1 Changes and New Features Since J2SE, V. 1.3
	2.2 Bugs Fixed in J2SE, Version 1.4, CORBA
	2.3 Previous Versions of CORBA in J2SE
	2.4 Backward and Forward Compatibility
	2.4.1 Code Compatibility
	2.4.2 Wire Compatibility

	2.5 Upgrading to the J2SE, v. 1.4, Implementation CORBA From a Previous Version
	2.6 Porting Applications to the J2SE, v. 1.4, CORBA Implementation

	3 Using and Supporting the J2SE, V.�1.4, CORBA Implementation
	3.1 When to Use the RMI-IIOP Model
	3.2 When to Use the IDL Model
	3.3 Tutorials
	3.4 Tools and Utilities
	3.5 Localization and Internationalization

	4 Troubleshooting
	4.1 Product Limitations
	4.1.1 Multiple Profile IORs or URLs
	4.1.2 Interoperability With Third-Party ORBs
	4.1.3 Interoperability With the J2SE, v. 1.3, ORB
	4.1.4 Interoperability With the J2SE, v. 1.3.1, ORB
	4.1.5 Multiple ORBs in Persistent Servers
	4.1.6 Java Naming and Directory Interface (JNDI) in Persistent Servers

	4.2 Common User Questions
	4.3 Troubleshooting Utilities
	4.4 Common Developer Problems
	4.4.1 Internal Exception when Starting ORBD
	4.4.2 Client and Server Unable to Connect to NamingService
	4.4.3 Servertool Registration Failure

	4.5 Error Message Guide
	4.5.1 CORBA.COMM_FAILURE Exception
	4.5.2 CORBA.INTERNAL Exception
	4.5.3 Other CORBA Exceptions

	5 Key Files and Directories
	5.1 Configuration Files
	5.1.1 The orb.properties File

	5.2 Directories Created at Installation

	6 Installing and Configuring J2SE, V.�1.4 CORBA
	7 Reference Information
	7.1 Product Information
	7.2 Technical Documentation
	7.3 Frequently Asked Questions
	7.4 Tutorials and Other References

